G3 paper

Publications
Author

Tom

Published

December 14, 2021

Our paper “Restricted maximum-likelihood method for learning latent variance components in gene expression data with known and unknown confounders” has been published in G3. In this paper we analyse the mathematical structure of a class of statistical models for learning hidden factors influencing gene expression data and show that a new algorithm based on the analytical results is orders of magnitude faster than the standard algorithms for solving this class of models.