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Abstract. We present new results and give a concise review of recent previous
results on the asymptotics for large spin of the low-lying spectrum of the fer-
romagnetic XXZ Heisenberg chain with kink boundary conditions. Our main
interest is to gain detailed information on the interface ground states of this
model and the low-lying excitations above them. The new and most detailed
results are obtained using a rigorous version of bosonization, which can be in-
terpreted as a quantum central limit theorem.
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1. Introduction

In recent years the XXZ model has become a popular model to study prop-
erties of interface states in quantum lattice models. As an interpolation between
the Ising model and the isotropic (XXX) Heisenberg ferromagnet, the ferromag-
netic XXZ model has the interesting features of both. By considering the Ising
model and the XXX model as limiting cases of the XXZ model, intuition about
these two limits can be used to better understand the XXZ model. In this pa-
per we are interested in the large-spin asymptotics of the low-lying excitation
spectrum of the XXZ chain, in particular the excitations above the kink (or
interface) ground states of the model. In a nutshell, our main result is that the
spin-wave approximation, in the sense of Dyson [6], becomes exact in the limit
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of infinitely large spin. The technical statements are given in Section 2. First,
we introduce the model and the main notations and give a quick summary of
the relevant previous results.

For J = 1/2, 1, 3/2, . . ., the spin-J XXZ Hamiltonian on an interval Λ =
[a, b] ⊂ Z, with kink boundary conditions, is given by

HJ,Λ =

b−1∑

x=a

HJ
x,x+1, (1.1)

HJ
x,x+1 = J2 − 1

∆
(S1
xS

1
x+1 + S2

xS
2
x+1)− S3

xS
3
x+1 + J

√
1−∆−2(S3

x − S3
x+1)

with Six the spin-J matrices acting on site x:

[Six, S
j
y] = iδx,yεijkS

k
x , Sx · Sx = (S1

x)2 + (S2
x)2 + (S3

x)2 = J(J + 1).

We will also use the spin raising and lowering operators: S+
x and S−x , S±x =

S1
x ± iS2

x.
We begin with a brief overview of the main results obtained for the Hamil-

tonians HJ,Λ. The spin 1/2 model, J = 1/2, is Bethe Ansatz solvable and
possesses a quantum group symmetry [19]. Consequently, there are a number of
results specific to the spin 1/2 case (e.g., see [3,11,18]). Since the main focus in
this paper is on large-J behavior, we will not discuss these specific results here.

The Hamiltonian (1.1) is symmetric under global rotations around the 3-axis
generated by S3

tot,Λ =
∑
x∈Λ S

3
x, which represents the third component of the

total magnetization. Hence, HJ,Λ is block diagonal, and it is known that in each
sector corresponding to a given eigenvalue of S3

tot,Λ there is exactly one ground
state, i.e., in each sector 0 is a simple eigenvalue [12]:

HJ,ΛΦ
(M)
Λ = 0, S3

tot,ΛΦ
(M)
Λ = MΦ

(M)
Λ ,

where M = −|Λ|J,−|Λ|J + 1, . . . , |Λ|J . The (unnormalized) eigenvector Φ
(M)
Λ

is given by

Φ
(M)
Λ =

∑

{mx}P
xmx=M

∏

x∈Λ

(
2J

J −mx

)1/2

qx(J−mx)|{mx}〉,

where we introduced the parameter q, 0 < q < 1, by the equation 2∆ = q+q−1.
These ground states have a magnetization profile that shows an interface, or
kink, with a location depending on the value of M . For a short review on the
properties of these ground states see [17].

In many instances it is important to consider the thermodynamic limit, i.e,
the limit of infinitely long chains. To this end, we consider a strictly increasing
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sequence of numbers an ∈ Z+ and limn an = ∞, and a sequence of volumes
Λn = [−an + 1, an]. The set of eigenvalues of S3

tot,Λn
is then

Mn = {−2anJ,−2anJ + 1, . . . , 2anJ}

and since 2J is an integer, we have Mn ⊂ Mm for n < m. Hence we can fix
M ∈ Z, take n0 large enough such that M ∈Mn for all n ≥ n0, and consider a
sequence of states

ω
(M)
Λn

=

〈
Φ

(M)
Λn

, · Φ(M)
Λn

〉
〈
Φ

(M)
Λn

,Φ
(M)
Λn

〉 .

It is shown in [10,13] that in the limit n→∞, any such sequence converges
in norm to a unique state ω(M) on the quasi-local algebra of observables A which
is the norm completion of the algebra of local observables given by

Aloc =
⋃

Λ⊂Z

⊗
x∈Λ

M2J+1(C)

and each ω(M) is a ground state for the derivation δJ defined by

δJ (X) = lim
Λ↗Z

i[HJ,Λ, X],

i.e.,
ω(M)

(
X∗δ(X)

)
≥ 0 for X ∈ Aloc.

All these infinite volume kink states have the same GNS Hilbert space,
namely the incomplete tensor product Hilbert space

HJ =
⋃

Λ⊂Z

([
⊗
x∈Λ

C2J+1
]
⊗
[
⊗

y∈Z\Λ
Ωy

])

where

Ωy =

{
| − J〉, if y ≤ 0,

|J〉, if y > 0.

Also denote Ω = ⊗y∈Z Ωy ∈ HJ , and the GNS Hamiltonian on HJ will be
denoted HJ .

It was proved in [13,21] that, for all J = 1/2, 1, 3/2, . . ., these Hamiltonians
have a gap above the ground state eigenvalue, which is 0. Let us denote the
gap by γJ,M . In the case of J = 1/2, the exact value of the gap was previously
known to be 1 −∆−1, for all ∆ ≥ 1. In [13] a very explicit conjecture is made
about the value of the gap in the limit J →∞. For all finite J , it is a periodic
function of M , with period 2J . The conjecture in [13] is as follows:
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Conjecture 1.1. For all µ ∈ R, the limit limJ→∞(1/J)γJ,µJ = γ̃(r) exists and

is given by the smallest positive eigenvalue of the Jacobi operator h̃(r), defined
below in (2.1), where r is the solution of the equation

µ =
+∞∑

x=−∞
tanh(η(x− r)) (1.2)

with η determined by ∆ = cosh η.

A partial result towards this conjecture was proved in [4]. Namely, there it
is shown that there are constants c1 > 0, and c2 > 0, independent of M and J ,
such that

c1J ≤ γJ,M ≤ c2J .

In this paper we prove that the value of the gap claimed in the conjecture
is asymptotically correct. The results in this paper by themselves, however, do
not amount to a proof of the conjecture as stated. Roughly speaking, we ob-
tain the result in the “grand-canonical ensemble”, and with the aid of a ground
state selection mechanism that localizes the kink. The conjecture is stated in
the “canonical ensemble”, i.e., for fixed µ = M/J , in which the kink is automat-
ically localized at a fixed location. As is often the case the distinction between
canonical and grand-canonical results seems merely technical, but proving math-
ematical equivalence of both formulations is often highly non-trivial. In fact,
equivalence of ensembles in the usual sense does not hold in the present situa-
tion. To prove the conjecture as stated above, some additional work has to be
done. We will report on this further work in a future publication [16].

The conjecture of [13] was based on results form perturbation theory and nu-
merical calculations on small systems presented in [21], as well as on a heuristic
calculation leading to a Boson model.

The idea is to apply a rigorous version of Dyson’s spin wave formalism to
the XXZ chain. Mathematically speaking, the task is to control the quadratic
approximation, described by a quasi-free system of Bosons, and show that this
approximation becomes exact in the limit J →∞.

Several authors have attempted to do this for the XXX model, with inter-
esting results [2, 22]. In these works, the authors considered the XXX model
in an external magnetic field, and it was necessary to let the strength of the
field diverge as J → ∞. Such a field selects a particular ground state (out of
the infinite number of them), and creates a gap in the spectrum. This allows
one to proceed, but it limits the mathematical applicability of the spin-wave
formalism. In the case of the XXZ-model, the situation is somewhat better.
First, the XXZ chain by itself (i.e., without external magnetic field) already has
a non-vanishing spectral gap. Second, although the infinite XXZ chain also has
an infinite number of ground states — with the degeneracy now corresponding
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to the arbitrary position of the kink — any field at just one site with a non-
vanishing component in the XY-plane, a so-called pinning field, will select a
unique ground state, for finite J [5]. Moreover, the magnitude of this field, as
we will show, can be taken of smaller order in J . These features of the XXZ
model will allow us to prove asymptotic properties of the model itself.

2. Main results

2.1. The limiting Boson model

Our main result will be that the spectrum of the XXZ chain, in the limit of
infinite spin, can be understood as the spectrum of a non-interacting system of
Bosons on the chain, with one-particle Hamiltonian, h̃(r), defined on `2(Z) by

(h̃(r)v)x = εxvx −∆−1(vx−1 + vx+1), (2.1)

where

εx =
2 cosh(η(x− r))2

cosh(η(x− 1− r)) cosh(η(x+ 1− r))
with η = − ln q or, equivalently, ∆ = cosh η, and r ∈ R is the position of
the kink in the reference ground state (see (1.2)). h̃(r) has the form of the
discrete Laplacian (kinetic energy) plus a diagonal term given by εx, which is
an exponentially localized potential well centered around the interface.

We list some properties of h̃(r), some of which are easily proved, while other
more detailed properties about its spectrum have at this point only been verified
numerically. We will discuss these in more detail elsewhere.

(i) h̃(r)is a positive operator;

(ii) h̃(r)has an eigenvalue 0 with eigenvector v0 ∈ `2(Z), up to normalization
defined by v0,x = 1/ cosh(η(x− r));

(iii) the bottom of the continuous spectrum of h̃(r) is given by 2(1−∆−1);

(iv) the first excited state of h̃(r)corresponds to an isolated eigenvalue γ̃(r)

below the continuum;

(v) the (∆−1, r)-plane is divided in a region where γ̃(r)is the only eigenvalue
below the continuum, and a region where there is another isolated eigen-
value between γ̃(r)and the bottom of the continuum.

Let h̃(r)(x, y) be the bi-infinite Jacobi matrix expressing (2.1) in the standard
Kronecker-delta basis of `2(Z), i.e.,

h̃(r)(x, y) = εxδx,y −
1

∆
(δx−1,y + δx+1,y).
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The Boson Hamiltonian is then given by second quantization of h̃(r):

H̃(r) =
∑

x,y∈Z

h̃(r)(x, y)a∗xay,

where a∗x and ay are the creation and annihilation operators for a Boson at site
x and y, respectively. They act on the Bosonic Fock space with one-particle
space `2(Z), F , and satisfy the canonical commutation relations (CCR)

aya
∗
x − a∗xay = δx,y1, ayax − axay = a∗ya

∗
x − a∗xa∗y = 0, x, y ∈ Z.

Let Ω̃ ∈ F denote the vacuum vector which, up to a scalar factor is uniquely
characterized by the property axΩ̃ = 0, for all x ∈ Z.

We will often use the following standard orthonormal basis in F . Introduce

~n = {nx ∈ N}x∈Z, N =
{
~n
∣∣∑

x

nx <∞
}
.

Then, the set {ϕ~n | ~n ∈ N}, where

ϕ~n =
∏

x∈Z

1

(nx!)1/2
(a∗x)nxΩ̃, (2.2)

is an orthonormal basis of F .
The GNS Hilbert spaces of the spin chains, HJ , J ≥ 1/2, 1, 3/2, . . ., can

be identified with a nested sequence of subspaces of F , defined for each J , as
the linear span of all vectors ϕ~n, with nx ≤ 2J . We will use this identification
throughout the paper, and we will use the same symbol ϕ~n to denote a vector
in the spin Hilbert space HJ and the boson space F . More precisely, we will
use the projections Pn,x on F which project onto the first 2n boson states at
site x, i.e., on the states ϕ~n with 0 ≤ nx ≤ 2n, and denote Pn =

∏
x Pn,x, and

find
HJ = PJF .

More details on the Boson model are given in Section 3.3.

2.2. Ground state selection by the external field

To prove full convergence of the low-energy spectrum, we need to add an
external field. A physical external field would be of the form

∑

x

~hJ,x · ~Sx. (2.3)

For our purposes, however, the field is a perturbation and our results will gen-
erally be more interesting if we can prove them with smaller perturbations.



Large-spin ferromagnetic XXZ chain 243

Ideally, a vanishingly small field localized at one site should suffice to select a
reference ground state. It turns out that we cannot quite do this in the present
setup. We shall use a perturbation of the form

sup
x

(
~hJ,x · ~Sx

)
, (2.4)

which is still significantly smaller than a uniform field. The meaning of this
operator is clear if we express states in a basis which is diagonal for each ~hJ,x ·~Sx.
It is important to remark that we can take

|~hJ,x| ≡ hJ = h(J lnJ)2/3,

such that after scaling with J−1 the external field vanishes, in contrast with
the fields employed in previous works on the XXX model [2, 22]. In fact some
results can be obtained with hJ ≡ 0, or hJ = h ln J .

Mathematically, the field (2.4) does slightly more than a field localized at
one site can achieve. It not only pins the interface, but also puts some control
on the local fluctuations around the selected ground state, which cannot be
controlled otherwise. The fact that we can let the field vanish as J increases,
and that we do not need a global field like (2.3), are signs that these fluctuations
are smaller in the XXZ model than in the isotropic model.

There is another mechanism of selecting a ground state, namely by restricting
the full Hilbert space to a subspace of states with fixed total magnetization in
the 3-direction, since it is known that in each such sector there is exactly one
ground state, see Section 1. The ground states that are pinned by an external
field are like grand-canonical averages of the canonical ground states with fixed
magnetization. In the limit J → ∞ the canonical description can be obtained
from the grand canonical one by a result analogous to the result of [21, Sections
5.11, 5.12] about equivalence of ensembles in the 2-dimensional, spin-1/2 XXZ
model. Note however that there is no equivalence of ensembles in our situation,
in the sense that correlation functions are typically different. But the difference
between a canonical state and a grand-canonical state with the right average
magnetization can be expressed completely in terms of the fluctuations of the
total 3-magnetization in the grand canonical state which are non-zero even in
the limit J → ∞, while they are identically zero in the canonical state. The
results about the canonical description require significant additional work and
will be discussed elsewhere [16].

Finally we mention that because of the pinning field (2.4), our results give
only a partial proof of Conjecture 1.1. A full proof requires in addition that
the lowest excited state can be obtained from the ground state by acting on it
with 1 spin wave operator, or more generally by a finite number of operators
independent of J . This is a problem that should be handled at the level of
the spin system, rather than in the spin wave formalism. Some results in that
direction have recently been obtained in [18].
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An advantage of the grand-canonical description is that it clearly exhibits
how the Boson limit arises as the first quantum correction to the classical limit.

2.3. Statement of the main results

For A a self-adjoint operator and a, b ∈ R, denote by P(a,b)(A) the spectral
projection of A onto (a, b). For A acting on Fock space, denote

• the spectrum of A in F by σ(A);

• the spectrum of PJAPJ in HJ by σJ(A);

• the spectrum of PnJAPnJ in HnJ by σnJ (A), where HnJ is shorthand
for PnJF .

Also denote s-lim the strong, or strong resolvent, operator limit for bounded,
resp. unbounded operators acting on F .

In the GNS space HJ it is convenient to define S3
tot in the renormalized

sense: S3
tot =

∑
x∈Z

[
S3
x − sgn(x− 1/2)

]
, and denote

µ =
∑

x∈Z

[
tanh(η(x− r))− sgn

(
x− 1

2

)]

instead of (1.2).

Theorem 2.1. We have

s-lim
J→∞

1

J
HJ = H̃(r), s-lim

J→∞
1

J
S3

tot = µ1.

The proof of this result is given in Section 5.2.

Corollary 2.1.

(i) If λ ∈ σ(H̃(r)), there exists λJ ∈ σJ((1/J)HJ) such that

lim
J→∞

λJ = λ.

(ii) If a, b ∈ R, and a, b /∈ σpp(H̃(r)), then

s-lim
J→∞

P(a,b)

( 1

J
HJ

)
= P(a,b)(H̃

(r)).

(iii) If a, b ∈ R, and µ ∈ (a, b), then

s-lim
J→∞

P(a,b)

( 1

J
S3

tot

)
= 1.
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This corollary is a direct consequence of Proposition 5.1 and [20, Theo-
rem VIII.24].

In addition we can obtain spectral concentration of (1/J)HJ around discrete
eigenvalues of H̃(r) (also proved in Section 5.2).

Theorem 2.2. For every isolated eigenvalue E of H̃(r), there exists an interval

IJ = (E − εJ , E + εJ ) with lim
J→∞

εJ
J

ln J
= 0,

such that for any interval I around E s.t. I ∩ σ(H̃(r)) = {E}:

s-lim
J→∞

PI\IJ

( 1

J
HJ

)
= 0, s-lim

J→∞
PIJ

( 1

J
HJ

)
= P{E}

(
H̃(r)

)
.

Applying the same reasoning to S3
tot, we find that the interval (a, b) in item

(iii) of Corollary 5.2 can be chosen as

(a, b) = (µ− εJ , µ+ εJ)

with again limJ εJJ(lnJ)−1 = 0.
To prove full convergence of the spectrum, we have to add the external field

(2.4) to HJ , or, through the identification HJ = PJF , add:

hJ sup
x

(Nx) (2.5)

with hJ > 0, and Nx = a∗xax. Let us assume we add this field to (1/J)HJ , so
hJ already contains the factor J−1.

Take 0 < nJ < J , we get that on (HnJ )⊥ ∩HJ
1

J
HJ + hJ sup

x
Nx ≥ hJ sup

x
Nx ≥ hJnJ1.

Clearly, by choosing hJ and nJ such that

lim
J→∞

hJnJ =∞

statements about the spectrum on HJ reduce to statements about the spectrum
on HnJ . Or, if one chooses to make statements about the spectrum below a
certain value E, it is sufficient to choose hJ such that limJ hJnJ > E + ε.

Theorem 2.3. Let nJ = [(J(lnJ)−1)1/3]. If λ /∈ σ(H̃(r)), then λ /∈ σnJ ((1/J)
×HJ ) for J large enough.

This result is proved in Section 5.3.
Hence we get convergence of the spectrum of (1/J)HJ + hJ supxNx to the

spectrum of H̃(r) if

lim
J→∞

hJ = 0, lim
J→∞

hJ

( J

ln J

)1/3

=∞.
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3. Derivation of the Boson limit

3.1. The classical limit

The Boson limit can be considered as the first quantum correction to the
classical limit. Therefore, we first discuss the classical limit.

It is well known that for any quantum spin system, after rescaling each
spin matrix by J−1 and taking the large spin limit J → ∞, one obtains the
corresponding classical spin system [14]. For the XXZ chain in a finite volume
this is defined by the Hamiltonian

Hcl
Λ

(
{σx}x∈Λ

)
=

b−1∑

x=a

1− 1

∆

(
σ1
xσ

1
x+1+σ2

xσ
2
x+1

)
−σ3

xσ
3
x+1+

√
1−∆−2

(
σ3
x−σ3

x+1

)
,

(3.1)
where σx is a unit vector in R3. Minimizing this function with respect to {σx}x
yields zero-energy configurations that are planar waves [21], i.e., in spherical

coordinates we find configurations σ
(r)
x (ϕ) = (θ

(r)
x , ϕ), ϕ ∈ [−π, π] (the same at

all sites), and θ
(r)
x = 2 arctan(qx−r), where r ∈ R determines the value of the

total 3-magnetization.
Defining again η = − ln q or ∆ = cosh(η), we have

cos θ(r)
x =

1− q2(x−r)

1 + q2(x−r) = tanh
(
η(x− r)

)
, (3.2)

sin θ(r)
x =

2qx−r

1 + q2(x−r) =
1

cosh
(
η(x− r)

) , (3.3)

such that the zero-energy solutions clearly describe kinks centered around r.
For the classical model, to look at the low-energy behavior amounts to mak-

ing a quadratic Taylor approximation to (3.1). At each site, the angle coordi-
nates are replaced by new coordinates

qx = θx − θ(r)
x , px = sin θ(r)

x (ϕx − ϕ),

and the resulting harmonic oscillator Hamiltonian is

H̃cl
Λ =

1

2

b−1∑

x=a

(
ε+
x (q2

x + p2
x)− 1

∆

(
qxqx+1 + pxpx+1

))

+
1

2

b∑

x=a+1

(
ε−x (q2

x + p2
x)− 1

∆

(
qxqx−1 + pxpx−1

))
, (3.4)

where ε±x are given by

ε±x =
sin θ

(r)
x±1

∆ sin θ
(r)
x

=
cosh(η(x− r))

∆ cosh(η(x± 1− r)) .
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This can be derived using the identities of Lemma 5.1 below.
At sites other than the boundary sites we have a single-site potential

εx = ε+
x + ε−x =

2 cosh(η(x− r))2

cosh(η(x− 1− r)) cosh(η(x+ 1− r))

which is an exponentially localized well centered around the interface.

3.2. Grand canonical states

For (θx, ϕx) a general unit vector on the sphere at site x, we can define the
coherent spin state in (C2J+1)x (see [1, 14]):

|(θx, ϕx)〉 = exp
{1

2
θx
(
S−x e

iϕx − S+
x e

iϕx
)}
|J〉

=
J∑

mx=−J

(
2J

J −mx

)1/2(
cos

1

2
θx

)J+mx(
sin

1

2
θx

)J−mx

× exp{i(J −mx)ϕx}|mx〉.

This is particularly interesting if we choose the unit vectors at each site to
be the classical zero-energy configurations. In a finite volume Λ, it is easy to
see that ∣∣σ(r)

Λ (ϕ)
〉
≡ ⊗
x∈Λ

e−iJϕ
∣∣(θ(r)

x , ϕ)
〉

=
1

‖Ψ(z)
Λ ‖

Ψ
(z)
Λ ,

where Ψ
(z)
Λ is the generating vector for the ground state vectors Φ

(M)
Λ , i.e., the

grand canonical ground state:

Ψ
(z)
Λ =

|Λ|J∑

M=−|Λ|J
zMΦ

(M)
Λ

evaluated at z = qr exp{−iϕ} = exp{−ηr} exp{−iϕ}.
The fact that a classical ground state yields an exact quantum ground state

through the coherent state representation, is because HJ,Λ is a normal Hamil-
tonian in the sense of [14], and the classical and quantum ground state energies
are (exactly) related by the scaling factor J 2.

Since these states are product states, their thermodynamic limit is easily

obtained. In the GNS Hilbert space HJ , define the embedding of |σ(r)
Λ (ϕ)〉 as

∣∣σ̄(r)
Λ (ϕ)

〉
≡
∣∣σ(r)

Λ (ϕ)
〉
⊗
[
⊗

x∈Z\Λ
Ωx
]
.
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Lemma 3.1. For a sequence of intervals Λn = [−an + 1, an] tending to Z, we
have for m > n

∥∥ |σ̄(r)
Λm

(ϕ)〉 − |σ̄(r)
Λn

(ϕ)〉
∥∥ ≤ 2Jq2an

1− q2(am−an)

1− q2

(
q2r + q2−2r

)
.

Proof.
∥∥ |σ̄(r)

Λm
(ϕ)〉 − |σ̄(r)

Λn
(ϕ)〉

∥∥2

=
∥∥ ⊗
x∈Λm\Λn

e−iJϕ|(θ(r)
x , ϕ)〉 − ⊗

x∈Λm\Λn
Ωx
∥∥2

= 2−
−an∏

x=−am+1

e−iJϕ〈−J | (θ(r)
x , ϕ)〉

am∏

x=an+1

e−iJϕ〈J | (θ(r)
x , ϕ)〉

−
−an∏

x=−am+1

eiJϕ〈(θ(r)
x , ϕ) | −J〉

am∏

x=an+1

eiJϕ〈(θ(r)
x , ϕ) | J〉

= 2− 2

am−1∏

x=an

1

(1 + q2(x+r))J

am∏

x=an+1

1

(1 + q2(x−r))J

≤ 2

(
1− exp

(
− J

am−1∑

x=an

q2(x+r) − J
am∑

x=an+1

q2(x−r)
))

≤ 2J

( am−1∑

x=an

q2(x+r) +

am∑

x=an+1

q2(x−r)
)

= 2Jq2an
1− q2(am−an)

1− q2

(
q2r + q2−2r

)
,

where we used the inequalities (for u ≥ 0) 1 + u ≤ exp u and 1− exp{−u} ≤ u.
2

It follows that the sequence |σ̄(r)
Λn

(ϕ)〉 has a limit |σ(r)(ϕ)〉 in HJ that we can
formally write as

∣∣σ(r)(ϕ)
〉
≡
[
⊗
x≤0

exp
{
− 1

2
(π − θ(r)

x )(S−x e
iϕ − S+

x e
iϕ)
}

Ωx

]

⊗
[
⊗
x>0

exp
{1

2
θ(r)
x (S−x e

iϕ − S+
x e

iϕ)
}

Ωx

]
.

In general, if we write z = |z|e−iϕ, then

Ψ
(z)
Λ = exp{−iϕS3

tot,Λ}Ψ(|z|)
Λ , (3.5)

so it will be sufficient to restrict our detailed analysis to the grand canonical

states Ψ
(e−ηr)
Λ . The expectation in this state will be denoted ω

(r)
Λ :
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ω
(r)
Λ =

〈Ψ(e−ηr)
Λ , · Ψ(e−ηr)

Λ

〉
∥∥Ψ

(e−ηr)
Λ

∥∥2

and its thermodynamic limit ω(r).
In this case, the coherent states are rotations of the ‘top’ state |J〉 through

an angle θ
(r)
x around the 2-axis, |(θ(r)

x , 0)〉 = exp{−iθ(r)
x S2

x}|J〉. Introduce the

notation u
(r)
x = (θ

(r)
x , 0), or in Cartesian coordinates u

(r)
x = (sin θ

(r)
x , 0, cos θ

(r)
x ).

In the remainder, we will always keep r fixed and do not make explicit the
dependence on r of various quantities. Notice that by periodicity it is sufficient
to take r ∈ [0, 1).

Denote by {e1
x, e

2
x, e

3
x} the standard basis in R3 (the same at every site), and

f1
x = cos θ(r)

x e1
x − sin θ(r)

x e3
x,

f2
x = e2

x,

f3
x = u(r)

x = sin θ(r)
x e1

x + cos θ(r)
x e3

x.

Conversely

e1
x = cos θ(r)

x f1
x + sin θ(r)

x f3
x ,

e2
x = f2

x ,

e3
x = − sin θ(r)

x f1
x + cos θ(r)

x f3
x ,

i.e., {f1
x , f

2
x , f

3
x} form an orthonormal frame for R3 and {f1

x , f
2
x} an orthonormal

frame for the tangent plane R2 to the unit sphere at u
(r)
x .

For vx ∈ R3, we denote by ṽx ∈ R2 the projection of vx onto the tangent

plane at u
(r)
x (shifted to the origin), i.e., ṽx = (ṽ1

x, ṽ
2
x) and

ṽ1
x = vx · f1

x = cos θ(r)
x v1

x − sin θ(r)
x v3

x, ṽ2
x = vx · e2

x = v2
x.

Conversely, if ṽx ∈ R2 we associate to it a vector vx ∈ R3 by putting the

component along the u
(r)
x -axis zero:

v1
x = cos θ(r)

x ṽ1
x, v2

x = ṽ2
x, v3

x = − sin θ(r)
x ṽ1

x.

Also denote
vx · Sx = v1

xS
1
x + v2

xS
2
x + v3

xS
3
x

and define rotated spin operators [1, Eq. (3.9)]

S̃1
x = exp{−iθ(r)

x S2
x}S1

x exp{iθ(r)
x S2

x} = f1
x · Sx = cos θ(r)

x S1
x − sin θ(r)

x S3
x, (3.6)

S̃2
x = exp{−iθ(r)

x S2
x}S2

x exp{iθ(r)
x S2

x} = S2
x, (3.7)

S̃3
x = exp{−iθ(r)

x S2
x}S3

x exp{iθ(r)
x S2

x} = f3
x · Sx = sin θ(r)

x S1
x + cos θ(r)

x S3
x. (3.8)
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Hence we find that |(θ(r)
x , 0)〉 is the ‘top’ state for the rotated spin operators:

S̃3
x

∣∣(θ(r)
x , 0)

〉
= S̃3

x exp{−iθ(r)
x S2

x}|J〉 = exp{−iθ(r)
x S2

x}S3
x|J〉 = J

∣∣(θ(r)
x , 0)

〉
.

(3.9)
The rotated spin raising and lowering operators are

S̃±x = S̃1
x ± iS̃2

x = − sin θ(r)
x S3

x + cos θ(r)
x S1

x ± iS2
x,

or

S̃+
x = − sin θ(r)

x S3
x + cos2 θ

(r)
x

2
S+
x − sin2 θ

(r)
x

2
S−x ,

S̃−x = − sin θ(r)
x S3

x − sin2 θ
(r)
x

2
S+
x + cos2 θ

(r)
x

2
S−x .

One of the main observations is that because of (3.9), it is much more con-
venient to introduce the spin wave formalism in the rotated spin basis than in
the original one. Following [22], introduce

~n = {nx ∈ N}x∈Z,

N =
{
~n |
∑

x

nx <∞
}
, NJ =

{
~n | ∀x : nx ≤ 2J,

∑

x

nx <∞
}
, (3.10)

ϕ~n =
∏

x∈Z

1

nx!

(
2J

nx

)−1/2(
S̃−x
)nx

Ω(r). (3.11)

The set {ϕ~n | ~n ∈ NJ} is an orthonormal basis for HJ .
We conclude with a little lemma that complements (3.5).

Lemma 3.2. For −π < ϕ < π,

exp{iϕS3
tot,Λ}

∣∣σ(r)
Λ

〉
=
(

cos(ϕ/2) + i cos θ(r)
x sin(ϕ/2)

)2J

× exp
{
− i
∑

x∈Λ

αx(ϕ) sin θ(r)
x S̃−x

}∣∣σ(r)
Λ

〉
,

where

αx(ϕ) =
sin(ϕ/2)

cos(ϕ/2) + i cos θ
(r)
x sin(ϕ/2)

.

Proof. We write the disentanglement relation [1, Eq. (A4)]

exp{iϕS3
x} = exp

{
iϕ
(
− 1

2
sin θ(r)

x (S̃+
x + S̃−x ) + cos θ(r)

x S̃3
x

)}

= exp{−iy−S̃−x } exp{(ln y3)S̃3
x} exp{iy+S̃

+
x },
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where

y3 =
(

cos(ϕ/2) + i cos θ(r)
x sin(ϕ/2)

)2
,

y+ = y− =
sin θ

(r)
x sin(ϕ/2)

cos(ϕ/2) + i cos θ
(r)
x sin(ϕ/2)

= αx(ϕ) sin θ(r)
x

and recall that |σ(r)
Λ 〉 is the product state of ‘top’ states for the S̃-operators. 2

It is now also clear how to choose the external field ~hJ,x in (2.3) such that
~hJ,x · ~Sx = −hJ S̃3

x, namely ~hJ,x = −hJu(r)
x , hJ > 0.

3.3. The Boson chain

We consider immediately the infinite volume situation. Consider the Hilbert
space of wave functions `2(Z) which we alternatively consider as the usual com-
plex Hilbert space with inner product 〈v, w〉 =

∑
x∈Z vxwx or as a real linear

space with symplectic form σ and complex structure J , i.e.,

v ∈ `2(Z) =
(
(v1
x, v

2
x) ∈ R2

)
x∈Z

,

σ(v, w) =
∑

x∈Z

v1
xw

2
x − v2

xw
1
x,

J v =
(
(−v2

x, v
1
x) ∈ R2

)
x∈Z

.

The CCR -algebra CCR(`2(Z), σ) is generated by unitaries {W (v) | v ∈ `2(Z)}
which satisfy the commutation relations

W (v)W (w) = exp
{
− i

2
σ(v, w)

}
W (v + w).

The Fock state ω̃ is the quasi-free state on CCR(`2(Z), σ) determined by

ω̃
(
W (v)

)
= exp

{
− 1

2
〈v, v〉

}
.

Its GNS representation is the usual Fock representation on a Fock space F with
a vacuum vector Ω̃ = ⊗x∈Z |0〉x and creation and annihilation operators a]x such
that

W (v) = exp
{
i
∑

x∈Z

(vxa
∗
x + vxax)

}
.

(We do not distinguish between W (v) and its representative in the Fock repre-
sentation).

In this Fock representation we can define a quasi-free Boson Hamiltonian by
canonically quantizing the classical harmonic oscillator Hamiltonian (3.4). This
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means replacing the position and momentum variables by canonical pairs qx,
px, with commutation relations [qx, py] = iδx,y and

a∗x =
qx − ipx√

2
, ax =

qx + ipx√
2

.

The result is

H̃
(r)
Λ =

b−1∑

x=a

(
ε+
x

(
a∗xax +

1

2

)
− 1

∆
a∗xax+1

)

+

b∑

x=a+1

(
ε−x
(
a∗xax +

1

2

)
− 1

∆
a∗xax−1

)
.

The corresponding infinite volume derivation is denoted

δ̃(r)(·) = lim
Λ↗Z

i [H̃
(r)
Λ , ·]

and the GNS Hamiltonian is denoted H̃(r),

H̃(r) =
∑

x∈Z

εxa
∗
xax −∆−1a∗x(ax−1 + ax+1).

Denote a∗(v) =
∑
x vxa

∗
x. If v is local, i.e., has only finitely many vx non-

zero, then

lim
Λ↗Z

[
H̃

(r)
Λ , a∗(v)

]
= a∗(h̃(r)v),

where h̃(r)is the bi-infinite Jacobi matrix defined on `2(Z) by

(h̃(r)v)x = εxvx −
1

∆
(vx−1 + vx+1). (3.12)

For the finite system localized in Λ = [a, b], we have

i
[
H̃

(r)
Λ , a∗(v)

]
= a∗(h̃(r)

Λ v),

where (h̃
(r)
Λ v)x = (h̃(r)v)x for x in the bulk [a + 1, b − 1], and at the boundary

sites we get

h̃
(r)
Λ va = ε+

a va −
1

∆
va+1, h̃

(r)
Λ vb = ε−b vb −

1

∆
vb−1.

Some important properties of h̃(r) were given in Section 2.1. Recall the
existence of a zero-mode (property (ii)) given by:

v0,x = sin θ(r)
x =

1

cosh(η(x− r)) .
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That this is an eigenvector of h̃(r)with eigenvalue zero, is easily verified:

ε±x vx,0 −
1

∆
vx±1,0 =

sin θ
(r)
x±1

∆ sin θ
(r)
x

sin θ(r)
x −

1

∆
sin θ

(r)
x±1 = 0.

The origin of the zero-mode v0 is well understood. It arises from the rotation
symmetry of HJ,Λ. This can be seen from Lemma 3.2, by taking ϕ ∝ J−1/2 and

formally identifying J−1/2S̃−x with a∗x (this identification will be made more pre-
cise below). For every N ∈ N, there is a zero-energy vector ψ0,N corresponding
to an N -particle occupation of v0:

ψ0,N =
1

|v0|N2
√
N !

a∗(v0)N Ω̃.

We define P0 the projection on v0 and P̃0 the projection onto the zero-energy
vectors, i.e.,

P0 =
|v0〉〈v0|
|v0|2

, (3.13)

P̃0 = ⊕
N∈N

|ψ0,N 〉〈ψ0,N |. (3.14)

For completeness we recall that we will always use the standard orthonormal
basis in F , i.e., the set {ϕ~n | ~n ∈ N}, where

ϕ~n =
∏

x∈Z

1

(nx!)1/2
(a∗x)nxΩ̃. (3.15)

We use the same symbol ϕ~n to denote a vector in the spin Hilbert space HJ and
the boson space F since we will use the identification of HJ with a subspace of
F as discussed before.

4. The large spin limit as a quantum central limit

Since the grand canonical states can be written as the ‘all +’ state for rotated
spin operators, we are in the usual situation of a fully ferromagnetic state in
which we expect a boson limit after rescaling with J−1/2, i.e., (1/

√
2J)S̃−x → a∗x

in some sense.
One way to make this precise is to define fluctuation operators: for vx ∈ R3,

FJ(vx) =
1√
J

(
vx · Sx − ω(r)(vx · Sx)

)
,

i.e., FJ (vx) measures the deviation from the ground state expectation value of
the spin in the vx direction. Similar fluctuation operators are used to study
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fluctuations of extensive observables, and their thermodynamic limit can be
taken as a noncommutative central limit [8, 9].

A connection between the spin limit J →∞ and these quantum central limits
was made in [15], with the caveat that each spin-J had to be represented as a
sum of spin-(1/2)’s, instead of working with an irreducible representation. This
latter restriction is however not necessary. We have, using results from [1,14]:

ω(r)
(

exp{ivx · Sx}
)

=
{

cos
(1

2
|vx|
)

+ i
vx · u(r)

x

|v| sin
(1

2
|vx|
)}2J

, (4.1)

ω(r)(vx · Sx) = J(vx · u(r)
x ),

ω(r)
(
FJ(vx)FJ(wx)

)
=

1

2

(
vx · wx − (vx · u(r)

x )(wx · u(r)
x ) + i(vx × wx) · u(r)

x

)
.

The latter quantity defines a (degenerate) inner product on R3:

〈vx, wx〉x = 2ω(r)
(
FJ(vx)FJ(wx)

)
. (4.2)

It is not hard to use (4.1) to show that

lim
J→∞

ω(r)
(

exp{iFJ(vx)}
)

= exp
{
− 1

2
〈vx, vx〉

}
. (4.3)

Clearly if either vx or wx is along the u
(r)
x -direction, then 〈vx, wx〉x = 0.

Hence (4.2) defines an inner product in R2 = C, the tangent plane to the unit

sphere at u
(r)
x . If for ṽx, w̃x ∈ R2, vx, wx are the corresponding vectors in R3

(see Section 3.2),

〈ṽx, w̃x〉x ≡ 〈vx, wx〉x = (ṽ1
x + iṽ2

x)(w̃1
x + iw̃2

x),

i.e., the standard inner product in C. We see that there are no fluctuations
in the direction perpendicular to the tangent plane at the classical zero-energy
solution. Two vectors in R3 at the same site will be called equivalent if their

projection onto the tangent plane at u
(r)
x is the same.

For v = (vx ∈ R3)x∈Z, with only finitely many vx 6= 0, we simply extend
this by putting

FJ(v) =
∑

x∈Z

FJ(vx),

〈v, w〉 = 2ω
(
FJ (v)FJ(w)

)
=
∑

x∈Z

〈vx, wx〉x.

Using (4.3), and standard techniques, the quantum central limit theorem follows:

lim
J→∞

ω(r)
(

exp{iFJ(v1)} . . . exp{iFJ(vn)}
)

= ω̃
(
W (v1) . . .W (vn)

)
,
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where ω̃ is the Fock state on the CCR-algebra CCR(`2(Z), σ) introduced in
Section 3.3, and the vectors v1, . . . , vn on the r.h.s. mean their respective equiv-
alence classes in `2(Z). The result can be understood intuitively from

vx · Sx = ṽ1
xS̃

1
x + ṽ2

xS̃
2
x = (ṽ1

x − iṽ2
x)S̃+

x + (ṽ1
x + iṽ2

x)S̃−x

for ṽx ∈ R2 and corresponding vx ∈ R3.
When studying properties of the GNS Hamiltonian, it is actually easier to

make a correspondence between the GNS Hilbert spaces HJ of ω(r) and F of ω̃.
Following [22], introduce the projection PJ,x on F which projects onto the

first 2J+1 Boson states at site x, i.e., on the states ϕ~n (3.15) with 0 ≤ nx ≤ 2J ,
and denote PJ =

∏
x PJ,x, i.e., PJ projects onto the states ϕ~n with ~n ∈ NJ , see

(3.10). By identifying ϕ~n (3.11) with ϕ~n (3.15), it is clear that HJ = PJF ,
where = means unitarily equivalent. Under this equivalence, we find that the
spin operators are given by [22]:

1√
2J
S̃−x = PJa

∗
xgJ(x)1/2,

1√
2J
S̃+
x = gJ(x)1/2axPJ , J − S̃3

x = PJa
∗
xaxPJ ,

(4.4)

where gJ(x) = gJ(a∗xax) and

gJ(n) =





1− 1

2J
n, n ≤ 2J,

0, n > 2J.

5. The low energy spectrum

5.1. Some estimates for the Hamiltonian

We first need the following identities:

Lemma 5.1.

cos θ
(r)
x−1 + cos θ

(r)
x+1 = εx cos θ(r)

x , (5.1)

∆−1(sin θ
(r)
x−1 + sin θ

(r)
x+1) = εx sin θ(r)

x , (5.2)

sin θ(r)
x sin θ

(r)
x±1 + ∆−1 cos θ(r)

x cos θ
(r)
x±1 = ∆−1, (5.3)

∆−1 cos θ(r)
x sin θ

(r)
x±1 − sin θ(r)

x cos θ
(r)
x±1 = ∓

√
1−∆−2 sin θ(r)

x , (5.4)

1

∆
sin θ

(r)
x±1 sin θ(r)

x + cos θ
(r)
x±1 cos θ(r)

x ∓
√

1−∆−2 cos θ(r)
x = ε±x . (5.5)

Proof. These are straightforward computations using the definitions (3.2) and

(3.3) of cos θ
(r)
x and sin θ

(r)
x , and the addition laws for sinh and cosh. 2
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With this lemma we can write the Hamiltonian in terms of the S̃-operators.

Corollary 5.1.

HJ
x,x+1 = J2 − 1

2∆

(
S̃+
x S̃
−
x+1 + S̃−x S̃

+
x+1

)
− γx,x+1S̃

3
xS̃

3
x+1

+ J
√

1−∆−2
(

cos θ(r)
x S̃3

x − cos θ
(r)
x+1S̃

3
x+1

)

+
√

1−∆−2
(

sin θ(r)
x S̃1

xS̃
3
x+1 − sin θ

(r)
x+1S̃

3
xS̃

1
x+1

)

− J
√

1−∆−2
(

sin θ(r)
x S̃1

x − sin θ
(r)
x+1S̃

1
x+1

)
,

where

γx,x+1 = ε+
x +

√
1−∆−2 cos θ(r)

x = ε−x+1 −
√

1−∆−2 cos θ
(r)
x+1.

Proof. This follows immediately from the relations (3.6)–(3.8), and the previous
lemma. 2

With the Hamiltonian in terms of the S̃-operators, we can apply the unitary
transformation (4.4) to write the spin Hamiltonian as an operator on F :

1

J
HJ,Λ = PJ

{ b−1∑

x=a

[
ε+
x gJ(x)a∗xax −∆−1a∗x+1gJ(x+ 1)1/2gJ(x)1/2ax

]

+
b∑

x=a+1

[
ε−x gJ(x)a∗xax −∆−1a∗x−1gJ(x− 1)1/2gJ(x)1/2ax

]

+

√
1−∆−2

2J

[
cos θ

(r)
b N2

b − cos θ(r)
a N2

a

]
+

b−1∑

x=a

γx,x+1
(Nx −Nx+1)2

2J

+

√
1−∆−2

2J1/2

b−1∑

x=a

[
sin θ

(r)
x+1(gJ(x+ 1)1/2ax+1 + a∗x+1gJ(x+ 1)1/2)Nx

− sin θ(r)
x (gJ(x)

1
2 ax + a∗xgJ(x)1/2)Nx+1

]}
PJ , (5.6)

and likewise for the ∞-volume GNS Hamiltonian:

1

J
HJ = PJ

{∑

x∈Z

[
εxgJ(x)a∗xax (5.7)

−∆−1a∗xgJ(x)1/2
(
gJ(x− 1)1/2ax−1 + gJ(x+ 1)1/2ax+1

)]

+
b−1∑

x=a

γx,x+1
(Nx −Nx+1)2

2J

+

√
1−∆−2

2J1/2

∑

x∈Z

sin θ(r)
x (gJ(x)1/2ax + a∗xgJ(x)1/2)(Nx−1 −Nx+1)

}
PJ .
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In the usual language of spin wave theory [6, 7, 22], the first term (between
[. . . ]) in the Hamiltonian is called the kinematical interaction HJ,kin, and the
second term the dynamical interaction HJ,dyn. The last term, which describes
transitions between subspaces with constant number of particles, is not usually
present. We denote it HJ,tran. Note that we define these three operators with
the right scaling already included, i.e.,

1

J
HJ = PJ{HJ,kin +HJ,dyn +HJ,tran}PJ .

We will only let these operators act on vectors in HJ , hence we may forget
about the PJ . To further simplify some notation, introduce

• the column vector A of annihilation operators:

A =




...
ax
...


 ,

• the diagonal matrix GJ :

GJ (x, y) = gJ(x)δx,y.

Then we can write

HJ,kin = A∗G1/2
J h̃(r)G

1/2
J A− 1

2J

∑

x

εxa
∗
xax,

H̃(r) = A∗h̃(r)A,

where h̃(r) is the one-particle Boson Hamiltonian, see (3.12), i.e., the matrix
with entries

h̃(r)(x, y) = εxδx,y −∆−1(δx−1,y + δx+1,y).

In the following we will fix for every J an nJ ∈ N with 0 < nJ < J and
make statements about the subspace PnJHJ of HJ . In the end we will formulate
results on the whole of HJ by adding an external pinning field which will take
care of the states in (PnJHJ )⊥ ∩HJ . For simplicity denote HnJ = PnJHJ .

Lemma 5.2. On HnJ we have the lower bound

HJ,kin ≥
(
γ̃(r)gJ(2nJ)− 1

J

)
Ntot − γ̃(r)A∗G1/2P0G

1/2A,

where γ̃(r) is the spectral gap of h̃(r) and P0 is defined in (3.13). An upper
bound (on the whole HJ) is given by

HJ,kin ≤ ‖h̃(r)‖Ntot.
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Proof. PnJ projects onto the vectors with at most 2nJ particles per site, such
that on HnJ :

GJ ≥ gJ(2nJ)1.

Obviously GJ ≤ 1 on HJ . The lemma follows from the bounds on h̃(r):

γ̃(r)(1− P0) ≤ h̃(r) ≤ ‖h̃(r)‖1

and also εx ≤ 2. 2

We are going to compare the spectrum of HJ,kin with the spectrum of H̃(r).
Both operators commute with Ntot so it is sufficient to compare them on eigen-
states of Ntot. Also for HJ,dyn it is sufficient to look at eigenstates of Ntot.

In the proof of the following lemmata we will use the following notation: for
~n, ~m ∈ N :

T±x ~n = ~m iff





mx = nx + 1,

mx±1 = nx±1 − 1,

my = ny, ∀y 6= x, x+ 1,

A±x ~n = ~m iff

{
mx = nx ± 1,

my = ny, ∀y 6= x.

Lemma 5.3. Let ψN ∈ HnJ , ‖ψN‖ = 1, NtotψN = NψN . Then

∥∥(H̃(r) −HJ,kin)ψN
∥∥ ≤ 2(1 + ∆−1)

nJN

J
,

∥∥HJ,dynψN
∥∥ ≤ 4nJN

J
.

Proof. We can write

ψN =
∑

~n

c~n ϕ~n with
∑

~n

|c~n|2 = 1,

where the sum runs over ~n ∈ NJ for which
∑
x nx = N . On basis vectors, we

have

HJ,kinϕ~n =
∑

x

εxnxgJ(nx)ϕ~n

−∆−1
∑

x

[
(nx + 1)gJ(nx)gJ(nx−1 − 1)nx−1

]1/2
ϕT−x ~n

−∆−1
∑

x

[
(nx + 1)gJ(nx)gJ(nx+1 − 1)nx+1

]1/2
ϕT+

x ~n



Large-spin ferromagnetic XXZ chain 259

and for H̃(r) the same with the gJ ≡ 1. We compare term by term. The first
one gives:

∥∥∥
∑

~n,x

c~nεx
[
nx − nxgJ(nx)

]
ϕ~n

∥∥∥
2

=
1

(2J)2

∑

~n

|c~n|2
∣∣∣
∑

x

εxn
2
x

∣∣∣
2

≤ 4N2n2
J

J2
,

where we used εx ≤ 2, nx ≤ 2nJ and
∑
x nx = N . For the second term we use

analogously gJ(nx) ≥ gJ(2nJ), and find:
∥∥∥
∑

~n,x

c~n
(
[(nx + 1)nx−1]1/2 − [(nx + 1)gJ(nx)gJ(nx−1 − 1)nx−1]1/2

)
ϕT−x ~n

∥∥∥

=
∥∥∥
∑

~m,x

cT+
x−1 ~m

(
[mx(mx−1 + 1)]1/2

− [mxgJ(mx − 1)gJ(mx−1)(mx−1 + 1)]1/2
)
ϕ~m

∥∥∥

≤
∑

~m

(∑

x

|cT+
x−1 ~m

|
∣∣[mx(mx−1 + 1)]1/2

− [mxgJ(mx − 1)gJ(mx−1)(mx−1 + 1)]1/2
∣∣
)2

≤
∑

~m

(∑

x

|cT+
x−1 ~m

|[mx(mx−1 + 1)]1/2(1− gJ(2nJ))
)2

≤ n2
J

J2

∑

~m

(∑

x

|cT+
x−1 ~m

|2(mx−1 + 1)
)(∑

x

mx

)
=
N2n2

J

J2

and the same for the third term. Summing everything together we find

∥∥(H̃(r) −HJ,kin)ψN
∥∥ ≤ 2(1 + ∆−1)

NnJ
J

.

For HJ,dyn we use the same reasoning, γx,x+1 ≤ 1, and

(nx − nx+1)2 ≤ 2n2
x + 2n2

x+1 ≤ 4nJ(nx + nx+1)

to find ∥∥HJ,dynψN
∥∥ ≤ 4nJN

J
.

2

For HJ,tran we have the following estimate.

Lemma 5.4. Let ψ ∈ HnJ , ‖ψ‖ = 1. Then

∥∥HJ,tranψ
∥∥ ≤ 2

√
1−∆−2|v0|1

( (2nJ + 1)(4nJ)2

J

)1/2

,

where |v0|1 is the `1-norm of the zero-mode.
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Proof. Let

ψ =
∑

~n

c~nϕ~n.

Then
∥∥∥
∑

x

sin θ(r)
x gJ(x)1/2ax(Nx−1 −Nx+1)ψ

∥∥∥
2

=
∥∥∥
∑

~n,x

c~n sin θ(r)
x gJ(nx − 1)1/2n1/2

x (nx−1 − nx+1)ϕA−x ~n

∥∥∥
2

=
∥∥∥
∑

~n,x

cA+
x ~n

sin θ(r)
x gJ(nx)1/2(nx + 1)1/2(nx−1 − nx+1)ϕ~n

∥∥∥
2

=
∑

~n

∣∣∣
∑

x

cA+
x ~n

sin θ(r)
x gJ(nx)1/2(nx + 1)1/2(nx−1 − nx+1)

∣∣∣
2

≤
∑

~n

(∑

x

sin θ(r)
x |cA+

x ~n
|2
)(∑

x

sin θ(r)
x (nx + 1)|nx−1 − nx+1|2

)

≤ |v0|1(2nJ + 1)(4nJ)2
∑

~n

∑

x

sin θ(r)
x |cA+

x ~n
|2

= |v0|21(2nJ + 1)(4nJ)2

and likewise for the second term. 2

5.2. Strong convergence and spectral concentration

Recall the following definitions. For A a self-adjoint operator and a, b ∈ R,
denote by P(a,b)(A) the spectral projection of A onto (a, b). For A acting on
Fock space, denote

• the spectrum of A in F by σ(A);

• the spectrum of PJAPJ in HJ by σJ(A);

• the spectrum of PnJAPnJ in HnJ by σnJ (A).

Also denote by s-lim the strong, or strong resolvent, operator limit for bounded,
resp. unbounded operators acting on F .

In the GNS space HJ it is convenient to define S3
tot in the renormalized

sense: S3
tot =

∑
x∈Z

[
S3
x − sgn(x− 1/2)

]
. Also denote

µ =
∑

x∈Z

[
cos θ(r)

x − sgn
(
x− 1

2

)]
,

i.e., µ is the 3-magnetization of a classical ground state {(θ(r)
x , ϕ)}x∈Z (see Sec-

tion 3.1).
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Proposition 5.1. We have

s-lim
J→∞

1

J
HJ = H̃(r),

s-lim
J→∞

1

J
S3

tot = µ1.

Proof. Introduce the set D, the finite linear space of vectors ϕ~n with ~n ∈ N . D
is a common core for (1/J)HJ , for all J , and H̃(r).

Take ψ ∈ D arbitrary (but normalized for simplicity) and denote

ψ =
∑

~n

c~nϕ~n,

Nψ = sup
~n : c~n 6=0

∑

x

nx.

Note that by assumption, ψ is a finite sum of ϕ~n with
∑
x nx < ∞, and hence

also Nψ <∞.
Now take J large enough such that ψ ∈ HJ . From the proof of Lemma 5.3

and 5.4 it is clear that we can use 2nJ ≤ Nψ, as soon as 2J > Nψ, hence

∥∥∥
( 1

J
HJ − H̃(r)

)
ψ
∥∥ ≤ (3 + ∆−1)

N2
ψ

J
+ 2
√

1−∆−2|v0|1
( (Nψ + 1)(2Nψ)2

J

)1/2

.

The first result follows from [20, Theorem VIII.25 (a)].
To prove the second statement, write

S3
x = cos θ(r)

x S̃3
x − sin θ(r)

x S̃1
x

= PJ
{

cos θ(r)
x (J −Nx)− sin θ(r)

x

(
gJ(x)1/2ax + a∗xgJ(x)1/2

)}
PJ

and hence

S3
tot =

∑

x

S3
x − sgn

(
x− 1

2

)

= PJ

{
µJ −

∑

x

cos θ(r)
x Nx −

∑

x

sin θ(r)
x

(
gJ(x)1/2ax + a∗xgJ(x)1/2

)}
PJ .

Clearly
∑
x cos θ

(r)
x Nx ≤ Ntot, and for ψ ∈ D as before

∥∥∥
∑

x

sin θ(r)
x a∗xgJ(x)1/2

(∑

~n

c~nϕ~n
)∥∥∥

2

=
∥∥∥
∑

~n,x

sin θ(r)
x c~n(nx + 1)1/2gJ(nx)1/2ϕAx~n

∥∥∥
2

≤ (Nψ + 1)|v0|21.
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Hence

∥∥∥
( 1

J
S3

tot − µ
)
ψ
∥∥∥ ≤ 1

J

(
Nψ + 2(Nψ + 1)1/2|v0|1

)

and (1/J)S3
tot → µ1 strongly on F . 2

Corollary 5.2.

(i) If λ ∈ σ(H̃(r)), there exists λJ ∈ σJ((1/J)HJ) such that

lim
J→∞

λJ = λ.

(ii) If a, b ∈ R, and a, b /∈ σpp(H̃(r)), then

s-lim
J→∞

P(a,b)

( 1

J
HJ

)
= P(a,b)

(
H̃(r)

)
.

(iii) If a, b ∈ R, and µ ∈ (a, b), then

s-lim
J→∞

P(a,b)

( 1

J
S3

tot

)
= 1.

Proof. The previous proposition and [20, Theorem VIII.24]. 2

In addition we can prove spectral concentration of (1/J)HJ around discrete
eigenvalues of H̃(r).

Proposition 5.2. For every isolated eigenvalue E of H̃(r), there exists an in-
terval

IJ = (E − εJ , E + εJ) with lim
J→∞

εJ
J

lnJ
= 0,

such that for any interval I around E s.t. I ∩ σ(H̃(r)) = {E}:

s-lim
J→∞

PI\IJ

( 1

J
HJ

)
= 0,

s-lim
J→∞

PIJ

( 1

J
HJ

)
= P{E}

(
H̃(r)

)
.

Proof. Let ψE be the simultaneous eigenvector of H̃(r) with eigenvalue E, and
of Ntot with eigenvalue NE . It follows that

NE ≤
E

γ̃(r)
.
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We have from Lemma 5.3

∥∥∥
( 1

J
HJ − E

)
ψE

∥∥∥ ≤ c(∆, r, E)

J

or,

lim
J→∞

J

ln J

∥∥∥
( 1

J
HJ − E

)
ψE

∥∥∥ = 0.

Hence it follows that E is a first order pseudo-eigenvalue with first-order pseudo
eigenvector ψE , and the result follows from [20, Theorem XII.22]. 2

Remark 5.1. Applying the same reasoning to S3
tot, we find that the interval (a, b)

in item (iii) of Corollary 5.2 can be chosen as

(a, b) = (µ− εJ , µ+ εJ)

with again limJ εJJ(lnJ)−1 = 0.

5.3. Convergence of the spectrum with a pinning field

To prove full convergence of the spectrum, we have to add the external field
(2.4) to HJ , or, to have a positive operator, add:

sup
x

(
|hJ,x|J − ~hJ,x · ~Sx

)
= hJ sup

x

(
J − S̃3

x

)
= hJ sup

x
(Nx) (5.8)

with hJ > 0, see also the end of Section 3.2, and Nx = a∗xax. Let us assume we
add this field to (1/J)HJ , so hJ already contains the factor J−1.

Take 0 < nJ < J as before, we get that on (HnJ )⊥ ∩HJ
1

J
HJ + hJ sup

x
Nx ≥ hJ sup

x
Nx ≥ hJnJ1.

Clearly, by choosing hJ such that

lim
J→∞

hJnJ =∞

statements about the spectrum on HJ reduce to statements about the spectrum
on HnJ . Or, if one chooses to make statements about the spectrum below a
certain value E, it is sufficient to choose hJ such that limJ hJnJ > E + ε.

Convergence of the spectrum of HJ,kin + HJ,dyn can be proved under the
weakest assumptions on nJ . First we prove convergence of the spectrum of
HJ,kin.

Proposition 5.3. Let nJ = [J(lnJ)−1], where [·] denotes the integer part. If
λ /∈ σ(H̃(r)), then λ /∈ σnJ (HJ,kin) for J large enough.
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Proof. Assume that λ ∈ σnJ (HJ,kin) for all J larger than some J0. Take δ > 0
arbitrary, and ψJ ∈ HnJ a normalized approximate eigenvector:

∥∥(HJ,kin − λ)ψJ
∥∥ < δ.

More precisely, take ψJ such that

P(λ−δ,λ+δ)(HJ,kin)ψJ = ψJ .

Since [HJ,kin, Ntot] = 0 we can take ψJ an eigenstate of Ntot with eigenvalue
NJ . Since ψJ is orthogonal to the ground state space, it follows from Lemma 5.2
that

NJ ≤
λ+ δ

γ̃(r)gJ(2nJ)− J−1
.

By our choice of nJ , we have limJ nJJ
−1 = 0, or limJ gJ(2nJ) = 1, and for J

large enough,

NJ ≤
2(λ+ δ)

γ̃(r)
.

Putting this into the bounds of Lemma 5.3, we find

∥∥(H̃(r) − λ)ψJ
∥∥ ≤

∥∥(H̃(r) −HJ,kin)ψJ
∥∥+

∥∥(HJ,kin − λ)ψJ
∥∥

≤ 4(1 + ∆−1)(λ+ δ)

γ̃(r)

nJ
J

+ δ

and it follows that ψJ is an approximate eigenvector for H̃(r) as well and λ ∈
σ(H̃(r)). 2

Now we add HJ,dyn:

Proposition 5.4. Let again nJ = [J(lnJ)−1]. If λ /∈ σ(H̃(r)), then λ /∈
σnJ (HJ,kin +HJ,dyn) for J large enough.

Proof. Since HJ,dyn ≥ 0, it follows that an approximate eigenvector ψJ for
HJ,kin +HJ,dyn must satisfy

∥∥HJ,kinψJ
∥∥ ≤ λ+ δ

with the same notation as in the previous proposition. Hence we get the same
estimate on NJ as before, but this implies by Lemma 5.3 that

lim
J
‖HJ,dynψJ‖ = 0

and ψJ is an approximate eigenvector for H̃(r) as well. 2
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Alternatively, these propositions prove that the spectrum of HJ,kin+HJ,dyn+

hJ supxNx converges to the spectrum of H̃(r), provided

lim
J
hJ = 0, lim

J

hJJ

lnJ
=∞.

To add HJ,tran we clearly have to relax our condition on nJ .

Proposition 5.5. Let nJ = [(J(lnJ)−1)1/3]. If λ /∈ σ(H̃(r)), then for J large
enough, λ /∈ σnJ ((1/J)HJ).

Proof. By Lemma 5.4 we have for all ψ ∈ HnJ

‖HJ,tranψ‖ ≤ 2
√

1−∆−2|v0|1
( (2nJ + 1)(4nJ)2

J

)1/2

‖ψ‖

and by assumption the r.h.s. goes to 0 as J →∞. 2

Hence we get convergence of the spectrum of (1/J)HJ + hJ supxNx if

lim
J→∞

hJ = 0, lim
J→∞

hJ

( J

ln J

)1/3

=∞.

The results obtained in this section include the statements made in Sec-
tion 2.3.
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