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Abstract. We provide the mathematical structure and a simple, transparent and rigorous
derivation of the magnons as elementary quasi-particle excitations at low temperatures and in the
infinite spin limit for a large class of Heisenberg ferromagnets. The magnon canonical variables
are obtained as fluctuation operators in the infinite spin limit. Their quantum character is governed
by the size of the magnetization.

1. Introduction

The appearance of spin waves in quantum ferromagnets at low temperatures is one of the
most basic physical quantum characteristics of quantum spin systems. It amounts to a boson
representation of the low-temperature elementary excitations of a spin system. The basic steps
in the understanding of this phenomenon were made by Bloch [1], Holstein–Primakoff [2],
van Kramendonk–van Vleck [3] and, in the more technical work, by Dyson [4,5].

From the point of view of mathematical physics, one discovers rigorous spin wave
properties at regular times as upper or lower bounds of correlations for low temperature or
ground states (see e.g. [6]). Undoubtly, the so-called Bethe ansatz [7] is the most representative
low-temperature model of the spin wave theory, and, as is well known, to prove or disprove
that the Bethe ansatz is correct for some models is presently a serious activity in mathematical
physics. On the other hand, for a long time the spin wave theory of Holstein–Primakoff called
for a simple, transparent and mathematically rigorous setting, in the sense that the conditions
for the appearance of spin waves are clearly formulated, and that then the derivation of the
spin waves or magnons is rigorously obtained.

As far as we know, the most serious attempt to achieve this has been made in [8]. On
the basis of a classical domination principle which makes clear how to create the situation of
a unique ferromagnetic quantum ground state, these authors define a ‘physical’ Hamiltonian,
which is of direct relevance to the analysis of the Holstein–Primakoff and the Dyson formalism.
They construct a ‘quadratic boson Hamiltonian’ in configuration space, and modulo an
approximation, which is usually called plausible for large spins. They are able to obtain
satisfying results on the asymptotic equality of the free energies of the quadratic boson
Hamiltonian and the Heisenberg model in any dimension for low enough temperatures.

Here, stimulated by [8], we are able to clarify a number of aspects of the spin wave or
magnon theory which were still absent. As in [8], we limit ourself to ferromagnets. Our
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main results are that we are able to use mathematical results on non-commutative central limit
theorems in order to scrutinize the large spin limit correctly and to give a rigorous scheme for
the formation of bosons. We are able to perform this programme without any uncontrollable
approximation. The result is that the magnon canonical variables are nothing but fluctuation
operators, whose mathematical structure is developed in [9, 10]. We rigorously perform the
infinite spin limit, and prove that the Heisenberg model at low temperature becomes a system
of non-interacting magnons. We discuss the quantum character of the magnons as a function
of the magnetization at low temperatures.

Our results are on the level of the equilibrium states going beyond the study of its
thermodynamic properties. We create the right conditions in order that the Heisenberg model
system converges to a system of magnons, i.e. we give a rigorous mathematical meaning to the
notion of ‘magnon limit’. All our conditions are in the direction of enough ferromagnetism.
This condition turns out to be the basic technical property to obtain Gaussian quantum
fluctuations, which in turn is responsible for the linearization in the magnon limit. We are
convinced that results can also be derived for antiferromagnets along the lines of what we have
here if one is able to pin the suitable conditions on the interaction constants in order to get a
specific antiferromagnetism. One may also ask the question whether analogous results are to
be expected in the non-equilibrium case. With our present understanding, the situation is not
clear. For situations near to equilibrium, as well as for metastable states, the magnon limit
seems to work. However, in the situation far from equilibrium the problem is less clear.

2. Low-temperature magnons

At each sitex of a finite domain3 of a cubic latticeZν , consider the spin-(2S + 1) variables
S1(x), S2(x), S3(x), in the representation on⊗Si=−S(C2)i given by

Sµ(x) =
S∑

i=−S
σ
µ

i (x) (1)

µ = 1, 2, 3, theσµi (x) Pauli matrices satisfying

[σ 1
i (x), σ

2
j (y)] = 2iδi,j δx,yσ

3
i (x) x, y ∈ Zν (2)

and its cyclic permutations of the components(1, 2, 3). Let

σ±i (x) =
σ 1
i (x)± iσ 2

i (x)

2
and

S±(x) =
S∑

i=−S
σ±i (x).

The Heisenberg model Hamiltonian on3 is given by

H3 = − 1
2

∑
x,y∈3
{J (x, y)[S1(x)S1(y) + S2(x)S2(y)] + J3(x, y)S

3(x)S3(y)} + h
∑
x∈3

S3(x).

(3)

We assume finite range, translation invariant interactions, i.e.J (x, y) = J (|x−y|), J3(x, y) =
J3(|x−y|)andJ (z) = J3(z) = 0 forz large enough, we assume also, without loss of generality,
J (x, x) = J3(x, x) = 0, which simply amounts to a redefinition of the interaction constants.

We remark that the representation of the spin variables is special in the sense that the
Sµ(x) (1), i.e. per lattice pointx, are permutation invariant for arbitrary permutations of the
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spin indexi = −S,−S + 1, . . . , S. The Hamiltonian on the other hand is not permutation
invariant under permutations of the lattice indicesx ∈ Zν .

As Bloch, Holstein–Primakoff, Dyson [1–5], we are also interested in theS tending to
infinity limit. In order to keep the model (3) thermodynamically stable, one has to rescale
it by the factor 2S + 1: H3 → HS

3 = (2S + 1)−1H3. Applying a rescaled magnetic field
h→ (2S + 1)h, we get

HS
3 = −

1

2(2S + 1)

∑
x,y∈3
{J (x, y)[S1(x)S1(y) + S2(x)S2(y)] + J3(x, y)S

3(x)S3(y)}

+h
∑
x∈3

S3(x).

Or, rewritten, usingJ (x, y) = J (y, x) andJ (x, x) = 0:

HS
3 = −

1

2(2S + 1)

∑
x,y∈3
{2J (x, y)[S+(x)S−(y) + S−(x)S+(y)] + J3(x, y)S

3(x)S3(y)}

+h
∑
x∈3

S3(x)

= − 1

2(2S + 1)

∑
x,y∈3
{4J (x, y)S+(x)S−(y) + J3(x, y)S

3(x)S3(y)}

+h
∑
x∈3

S3(x). (4)

We are interested in the equilibrium states of this model in theS → ∞ limit, and in the
thermodynamic limit3 → Zν . For each finite volume3, HS

3 is permutation invariant for
one-site observablesσ ]i (x) in spin space. Letω be an equilibrium state, then per lattice site
x ∈ 3, the stateω is again permutation invariant. In order to be able to give a definite
mathematical meaning to limits of the type, for one-sitex ∈ 3,

lim
S→∞

S](x)√
2S + 1

in the sense of non-commutative central limits, the stateω has to satisfy a cluster property

lim
i→∞

ω(Ai(x)Bj (x)) = ω(A)ω(B)
whereA(x) andB(x) are products of the Pauli matrices (see e.g. [9]). However, all clustering
permutation invariant states are product states. Without any restriction of generality, because
of the linearity of the equilibrium condition in the state, we can restrict ourself to these product
states in spin space. This means that the spin limit is taken with a fixed value of the average
spin. This implies thatω, the infinite volume, infiniteS limit equilibrium state at inverse
temperatureβ of HS

3, is a product state in spin space:

ω(AiBj ) = ω(A)ω(B)
for i 6= j andA,B one-site observables in spin space, i.e. observables on⊗x∈3(C2)x .

First we remark that for this product state in spin space, one has that in theω-weak
topology [9]:

weak − lim
S→∞

(
1

2S + 1

S∑
i=−S

σ
]

i (x)

)
= ω(σ ](x)) = ω(σ ]).

The last equality follows from space translation invariance, which is a consequence of the
space translation invariance of (3).
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Fork ∈ 3∗ = {k = 2π
L
n; n ∈ Zν}, |3| = Lν , let:

σ±i (k) =
1

|3|1/2
∑
x∈3
(σ±i (x)− ω(σ±i (x)))e±ik·x

σ 3
i (k) =

1

|3|1/2
∑
x∈3
(σ 3
i (x)− ω(σ 3

i (x)))e
ik·x

and

σ̃
]

i (k) = σ ]i (k) + |3|1/2ω(σ ])δk,0.
Then

F
]

S (k) =
1

(2S + 1)1/2

S∑
i=−S

σ
]

i (k) (5)

are fluctuation operators in spin space and in volume space. The infiniteS limit of these
operators is known to exist due to the product state character ofω [9], i.e. the following limits
exist: for allλ ∈ R,

lim
S→∞

ω(exp{iλ[F]S (k) + F]S (k)
∗]})

and

lim
S→∞

ω(exp{λ[F]S (k)− F]S (k)∗]}).

The limit operators limS→∞ F
]

S (k) are denotedF](k), they still depend on the volume3. It is
straightforward to check that these limits satisfy the canonical commutation relations.

Before taking the infiniteS-limit, the operators

F ]S(k) =
1

(2S + 1)1/2

S∑
i=−S

σ̃
]

i (k) (6)

can be used to rewriteHS
3 (4), after Fourier transformation, in the form

HS
3 = −

∑
k∈3∗
{2J (k)F+

S (k)F
−
S (k) + 1

2J3(k)F3
S (k)F3

S (−k)} + h(|3|(2S + 1))1/2F3
S (0)

whereJ (k) =∑z J (z, 0)e
−ik·z, J3(k) =

∑
z J3(z, 0)e−ik·z.

The following lemma characterizes the rotational invariance around the third axis, if there
is enough ferromagnetism.

Lemma 1. For h sufficiently large, i.e. for

h >
∑
x∈3

[J3(x, 0)− J (x, 0)] > 0

any equilibrium stateω satisfies in the3→ Zν , S →∞ limit:

ω(σ±) = 0.

Proof. Compute[
HS
3,

1

|3|
∑
x∈3

σ−i (x)
]
= −1

(2S + 1)|3|
S∑

j=−S

∑
x,y

{2J (x, y)σ 3
i (x)σ

−
j (y)

−J3(x, y)[σ
−
i (x)σ

3
j (y) + σ 3

j (y)σ
−
i (x)]} −

2h

|3|
∑
x

σ−i (x).
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Then the time invariance ofω implies

0= lim
|3|→∞

lim
S→∞

ω

([
HS
3,

1

|3|
∑
x∈3

σ−i (x)
])
= − lim

|3|→∞
1

|3|
∑
x,y

{2J (x, y)ω(σ 3)ω(σ−)

−2J3(x, y)ω(σ
3)ω(σ−)} − 2hω(σ−)

or

ω(σ−)
{
ω(σ 3)

∑
z

[J3(z, 0)− J (z, 0)] − h
}
= 0.

Since−16 ω(σ 3) 6 1, takingh >
∑

z[J3(z, 0)− J (z, 0)] > 0 ensures

ω(σ 3)
∑
z

[J3(z, 0)− J (z, 0)] − h < 0.

Hence

ω(σ−) = 0.

�

This result also means that the operatorsF±S andF±S , as defined in (5) and (6) coincide:

F±S (k) = F±S (k)
and hence also in the infiniteS-limit:

F±(k) = F±(k).
We compute the commutators for finiteS:

[F+
S (k),F

−
S (q)] =

1

|3|(2S + 1)

S∑
i=−S

∑
x

[σ +
i (x), σ

−
i (x)]e

i(k−q)·x

= 1

|3|1/2(2S + 1)1/2
F3
S (k − q)

and:

[F3
S (k),F

±
S (q)] =

1

|3|(2S + 1)

S∑
i=−S

∑
x

[σ 3
i (x), σ

±
i (x)]e

i(k±q)·x

= ± 2

|3|1/2(2S + 1)1/2
F±S (q ± k).

Therefore the limits satisfy the boson commutation relations:

[F+(k),F−(q)] = lim
S→∞

[F+
S (k),F

−
S (q)] = ω(σ 3)δk,q (7)

and

[F3(k),F±(q)] = lim
S→∞

[F3
S (k),F

±
S (q)] = ±2ω(σ±)δk,q = 0 (8)

on the basis of lemma 1.
TheF±(k) are the above rigorously defined magnon creation and annihilation operators.

Their existence and explicit properties are established as a straightforward application of the
non-commutative central limit theorems in [9], and the condition of ferromagnetism in lemma 1.

Now we proceed by determining the equilibrium stateω completely. We use the definition
of equilibrium state by means of correlation inequalities [11], i.e. for temperaturesT > 0



5880 T Michoel and A Verbeure

(β = 1
kT
< ∞), a stateω is an equilibrium state if and only if it satisfies the energy–entropy

balance inequalities:

lim
3→∞

lim
S→∞

βω(X∗[HS
3,X]) > ω(X∗X) ln

ω(X∗X)
ω(XX∗)

(9)

for all local observablesX. We now prove the following theorem.

Theorem 1. In the ferromagnetic region (see lemma 1), in the infiniteS-limit, the equilibrium
stateω of the Heisenberg model is a quasi-free state on the fluctuation operators algebra,
generated by the{F ](k), k ∈ [0, 2π ]ν}, completely determined by the two-point function

ω(F+(q)F−(q)) = −ω(σ 3)

e2β[−ω(σ 3)(J3(0)−J (q))+h] − 1
. (10)

Proof. First takeX = F−S (q), and compute

[HS
3,F

−
S (q)] = −

∑
k

2J (k)[F+
S (k),F

−
S (q)]F

−
S (k)

−
∑
k

1
2J3(k)([F3

S (k),F
−
S (q)]F

3
S (−k) +F3

S (k)[F3
S (−k),F−S (q)])

+h|3|1/2(2S + 1)1/2[F3
S (0),F

−
S (q)]

= − 2

|3|1/2(2S + 1)1/2
∑
k

J (k)F3
S (k − q)F−S (k)

+
1

|3|1/2(2S + 1)1/2
∑
k

J3(k)(F−S (q − k)F3
S (−k) +F3

S (k)F
−
S (q + k))

−2hF−S (q).
Then:

βω(F+
S (q)[H

S
3,F

−
S (q)])

= − 2β

|3|1/2(2S + 1)1/2
∑
k

J (k)ω(F+
S (q)F3

S (k − q)F−S (k))

+
β

|3|1/2(2S + 1)1/2
∑
k

J3(k)ω(F+
S (q)F

−
S (q − k)F3

S (−k))

+
β

|3|1/2(2S + 1)1/2
∑
k

J3(k)ω(F+
S (q)F3

S (k)F
−
S (q + k))

−2βhω(F+
S (q)F

−
S (q)).

Use that forA,B one-site observables in spin space such thatω(A) = 0 (see [9]):

lim
S→∞

1

(2S + 1)1/2
ω(FS(A)∗FS(B)FS(A)) = ω(A∗A)ω(B)

to calculate

lim
S→∞

βω(F+
S (q)[H

S
3,F

−
S (q)])

= − 2β

|3|1/2
∑
k

J (k) lim
S→∞

ω(F+
S (q)F

−
S (k))ω(σ

3)δk,q |3|1/2

+
β

|3|1/2
∑
k

J3(k) lim
S→∞

ω(F+
S (q)F

−
S (q − k))ω(σ 3)δk,0|3|1/2
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+
β

|3|1/2
∑
k

J3(k) lim
S→∞

ω(F+
S (q)F

−
S (q + k))ω(σ 3)δk,0|3|1/2

−2βh lim
S→∞

ω(F+
S (q)F

−
S (q))

and

lim
S→∞

ω(F+
S (q)F

−
S (q)) = ω(F+(q)F−(q)).

Then

lim
3→∞

lim
S→∞

βω(F+
S (q)[H

S
3,F

−
S (q)]) = 2β{ω(σ 3)[J3(0)− J (q)] − h}ω(F+(q)F−(q)).

After substitution into the correlation inequality (9), one gets:

−2β{−ω(σ 3)[J3(0)− J (q)] + h} > ln
ω(F+(q)F−(q))
ω(F−(q)F+(q))

.

Interchanging the role ofF+(q) andF−(q), i.e. take nowX = F+
S (q) in (9) and repeat

the computation above, then:

2β{−ω(σ 3)[J3(0)− J (q)] + h} > ln
ω(F−(q)F+(q))

ω(F+(q)F−(q))
.

These two inequalities, combined with the commutation relation (7) yield

ln
ω(F+(q)F−(q))− ω(σ 3)

ω(F+(q)F−(q))
= 2β{−ω(σ 3)[J3(0)− J (q)] + h}

or the expected two-point function

ω(F+(q)F−(q)) = −ω(σ 3)

e2β{−ω(σ 3)[J3(0)−J (q)]+h} − 1
.

Finally if one takes forX higher-order monomials in theF ]S(q), one derives readily also
from (9), that the higher-order point correlation functions are sums of products of this two-
point function, proving that the stateω is quasi-free. As this amounts to a straightforward
computation, we leave it as an exercise for the reader. �

The basic two-point function (10) still contains the magnetizationω(σ 3). Using (2) and
(6), one gets a self-consistency equation for the magnetization

1

|3|
∑
q∈3∗

ω(F+(q)F−(q)) = 1 +ω(σ 3)

2
. (11)

Let

D(x, y) = λ(x)δx,y − J (x, y) (12)

where

λ(x) =
∑
y

J3(x, y)

and suppose that we limit ourself to theferromagnetic situation(e.g.J3(x, y) > |J (x, y)|,
see [8]), expressed by the condition that the matrixD (12) is positive definite:

D(x, y) > 0.

This implies

D(q) =
∑
z

D(z, 0)e−iq·z = J3(0)− J (q) 6
∑
z

D(z, 0) = D(0).
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Hence

h >
∑
z

[J3(z, 0)− J (z, 0)] = D(0) > D(q)

and

h− ω(σ 3)[J3(0)− J (q)] = h− ω(σ 3)D(q) > h−D(q) > h−D(0) > 0.

From this, and from (10), it follows that

06 ω(F+(q)F−(q)) = −ω(σ 3)

e2β{h−ω(σ 3)D(q)} − 1
6 1

e2βh − 1
.

The first inequality yields−16 ω(σ 3) 6 0.
Using (11), one gets

ω(σ 3) 6 −1 +
2

e2βh − 1
(13)

6 −1 +
2

e2βD(0) − 1
' −1 + 2e−2βD(0) (14)

establishing a bound on the magnetization for low temperatures as a function of the interaction
constants. The bound measures the deviation of the magnetization from its ground state value,
equal to−1, for small temperatures.

Remark that forω(σ 3) = −1, the ground state (β → ∞) value of the ferromagnetic
system, the magnon creation and annihilation operators form a bosonic pair satisfying the
canonical commutation relations

[F−(q),F+(q)] = 1

and that the ground stateω is a magnon Fock state

ω(F+(q)F−(q)) = lim
β→∞

1

e2β[D(q)+h] − 1
= 0.

In general, for all temperatures, the magnetizationω(σ 3) plays the role of the quantization
parameter (a Planck constant) (see (7)) for the field of magnons. All quantum character of the
magnons vanishes if one chooses the magnetic fieldh and/or the interaction constants (D(q))
and/or the temperature such that the magnetization vanishes.

Concerning the magnetization fluctuation operatorsF 3
S (q), the ferromagnetic conditions

(h − D(0) > 0, D > 0) are such that its infiniteS-limit F 3(q) commutes with all other
magnon observables (see (8)). They become classical observables, and disappear completely
from the action of the system Hamiltonian. It does not mean that there are no magnetization
fluctuations.

The original system with HamiltonianHS
3 in terms of the fluctuation observables

{F±S (q), F 3
S (q)}q∈3∗ , becomes in the infiniteS-limit a system of non-interacting magnons

with the Hamiltonian

H3 =
∑
q∈3∗

ε(q)F+(q)F−(q) (15)

where the magnon fluctuation creation and annihilation operators satisfy

[F−(q),F+(q ′)] = −ω(σ 3)δq,q ′

and where the spectrum is given by

ε(q) = 2

(
J3(0)− J (q) +

h

−ω(σ 3)

)
.
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Note that if min(h,D(0)) > 0, then alreadyε(q = 0) > 0, i.e. there is no condensation of
magnons in the zero modeq = 0. In particular, this is the case under our assumptions.

By inverse Fourier transform, i.e.

F±(x) = 1

|3|1/2
∑
q∈3∗
F±(q)e∓iq·x

(15) can be written in configuration space:

H3 = 2
∑
x,y

D(x, y)F+(x)F−(y) +
2h

−ω(σ 3)

∑
x

F+(x)F−(x) (16)

with

[F−(x),F+(y)] = −ω(σ 3)δx,y (17)

andD is as defined above. Written this way, it is clear thatH3 is nothing but the ‘quadratic
boson Hamiltonian’ of [8].

Finally we look for the dynamics of the magnon excitation number operatorF+(x)F−(x).
On the basis of (11) the expectation value of this operator is related to the magnetization.
Therefore, the time evolution of this number operator is related to the time evolution of the
magnetic moment in a ferromagnet.

The equation of motion forF+(x)F−(x) is given by
∂

∂t
F+(x)F−(x) = i[H3,F+(x)F−(x)]

= − 2ω(σ 3)
∑
y

J (x, y)(F+(y)F−(x)− F−(y)F+(x)). (18)

Indeed, using (17) andJ (x, x) = 0 straightforwardly yields the result.
This dynamical equation (18) can be compared with the macroscopic equation of motion

for the magnetic moment, first derived in [12] (see also [13,14]). A recent rigorous derivation
of this equation for zero temperature is given in [15], applying a hydrodynamical limit or a
Lebowitz–Penrose approximation [16]. We remark that equation (18), however, is valid for
all temperature equilibrium states.

References

[1] Bloch F 1930Z. Phys.61206
[2] Holstein T and Primakoff H 1940Phys. Rev.581098
[3] van Kranendonk J and van Vleck J H 1958Rev. Mod. Phys.301
[4] Dyson F J 1956Phys. Rev.1021217
[5] Dyson F J 1956Phys. Rev.1021230
[6] Dyson F J, Lieb E H and Simon B 1978J. Stat. Phys.18335
[7] Bethe H A 1931Z. Phys.71205
[8] van Hemmen J L, Brito A A S andWreszinski W F 1984J. Stat. Phys.37187
[9] Goderis D, Verbeure A and Vets P 1989Probl. Theor. Relat. Fields82527

[10] Goderis D, Verbeure A and Vets P 1990Commun. Math. Phys.128533
[11] Fannes M and Verbeure A 1977Commun. Math. Phys.55125

Fannes M and Verbeure A 1977Commun. Math. Phys.57165
[12] Landau L D and Lifshitz E M 1935Phys. Zeitschrift Sowjetunion108153

Landau L D and Lifshitz E M 1980Statistical Physicsvol 9 (Oxford: Pergamon)
[13] Akhiezev A I, Bar’yakhtar V G and Peletminskii S V 1968Spin Waves, in Low Temperature Physicsvol 1

(Amsterdam: North-Holland)
[14] Herring C and Kittel C 1951Phys. Rev.81869
[15] Moser M, Prets A and Spitzer W L 1998 Time evolution of spin waves in ferromagnets at zero temperature

PreprintThPh-Vienna
[16] Lebowitz J L and Penrose O 1966J. Math. Phys.7 98


